Automatic Control Systems

Higher education teachers: Zupančič Borut
Credits: 5
Semester: summer
Subject code: 64119



Subject description

Prerequisits:

  • Enrollment in the 2nd year of univ. study

Content (Syllabus outline):

Introduction to automatic control: types, effects, holistic approach, computer integrated manufacturing, the building blocks of control systems, system approach to the control system design. Systems and signals: examples of systems, connection to modelling, processes, basic signals, an introduction to spectral analysis. Process modelling: goals, types, approaches, examples. Descriptions of mathematical models: differential equations, transfer functions, block diagrams. Systems analysis in the time domain: influence of poles and zeros, proportional, integral and differential systems, systems stability. Simulation: simulation scheme, indirect approach, simulation of transfer functions. Control systems : presentation with block diagrams and technological schemes, feedforward and feedback control, reference tracking and disturbance elimination, the effects of feedback on steady state error, stability, examples, basic industrial control algorithms, PID control, the role of P, I, and D parts, tuning with rules and simulation, examples. Tools for computer-aided analysis and control systems design: Matlab, Control Toolbox, tool for the simulation - Matlab-Simulink, environment for multi-domain object oriented modelling and simulation Dymola-Modelica. Examples: heating in the building, car suspension system, population dynamics, electrical systems, control of rotation systems, robotic system, hydraulic system, ...

Objectives and competences:

The basic objective is to present the automatic control systems in an interesting way through a series of examples and using computer tools.

Acquired skills:

  • modeling and simulation of simple systems,
  • an understanding of the principles of feedback loop,
  • design of automatic control of simpler processes,
  • familiarity of the most advanced computer tools for analysis,
  • modeling,
  • simulation and automatic control systems design.

Intended learning outcomes:

Students will learn:

  • to model and simulate simpler systems,
  • to design automatic control of simple laboratory processes and
  • to use the most advanced computer tools for analysis, modeling, simulation and automatic control systems design (Matlab, Control Systems Toolbox, Simulink, Dymola-Modelica).

Learning and teaching methods:

  • Lectures (with many examples), interesting topics from invited lecturers, laboratory exercises





Study materials

  • B. Zupančič, Avtomatsko vodenje sistemov, delovna verzija učbenika, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2014.
  • S. Oblak, I. Škrjanc, Matlab s Simulinkom : priročnik za laboratorijske vaje, 1. izdaja, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2005.
  • B. Zupančič, Zvezni regulacijski sistemi 1. del, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2010.
  • B. Zupančič, R. Karba, D. Matko, I. Škrjanc, Simulacija dinamičnih sistemov, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko , 2010.
  • R. Karba, Modeliranje procesov, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1999.
  • S. Strmčnik, R.Hanus, Đ. Juričić, R. Karba, Z. Marinšek, D.Murray-Smith, H. Verbruggen, B. Zupančič, Celostni pristop k računalniškemu vodenju procesov, 1. izdaja, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1998.
  • R. C. Dorf, H. Bishop: Modern Control Systems, Pearson Education, Inc., Publishing As Pearson Prentice Hall, Tenth Edition, 2004.



Study in which the course is carried out

  • 2 year - 1st cycle - Electrical Engineering