Opis predmeta
Računalniška orodja za analizo mikromrež (R, Bioconductor) in povezovanje z bazami podatkov in ontologij.
- načrt poskusa,
- priprava podatkov,
- odstranjevanje šuma ozadja,
- normalizacija,
- analiza diferencialne izraženosti,
- metode za iskanje povezav med skupinami genov,
- grafične predstavitve in vizualizacija rezultatov.
Cilji in kompetence
Pri predmetu se bodo študentje seznanili s sodobnimi metodami in fazami uporabe statistike v bioinformatiki in analize mikromrež: Usposobili se bodo za samostojno uporabo programskih orodij za analizo in vizualizacijo velikih količin podatkov.
Metode poučevanja in učenja
Predavanja, praktično delo z računalniki, projektno delo, individualne naloge.
Predvideni študijski rezultati
Znanje in razumevanje:
– uporaba Linux in R za analizo bioinformacijskih podatkov,
– razumevanje problema analize visokodimenzionalnih podatkov.
Reference nosilca
Kristina Gruden:
- Rotter A, Hren M, Baebler S, Blejec A, Gruden K. Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing. Omics : a Journal of Integrative Biology. 2008 Sep;12(3):171-182. DOI: 10.1089/omi.2008.0032
- Bauer, C., Stec, K., Glintschert, A., Gruden, K., Schichor, C., Or-Guil, M., Selbig, J., & Schuchhardt, J. (2015). BioMiner: Paving the Way for Personalized Medicine. Cancer informatics, 14, 55–63. https://doi.org/10.4137/CIN.S20910
- Baebler Š., Svalina M., Petek M., Stare K., Rotter A., Pompe-Novak M., Gruden K. 2017. QuantGenius: Implementation of a decision support system for qPCR-based gene quantification. BMC Bioinformatics, 18, 1: 1–11
- Stare, T., Ramšak, Ž., Križnik, M. et al. Multiomics analysis of tolerant interaction of potato with potato virus Y. Sci Data 6, 250 (2019). https://doi.org/10.1038/s41597-019-0216-1
- Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Gruden K, Stitt M, Bolger ME, Usadel B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. Mol Plant. 2019 Jun 3;12(6):879-892. doi: 10.1016/j.molp.2019.01.003. Epub 2019 Jan 9. PMID: 30639314.
- Dobnik D, Gruden K, Ramšak Ž, Coll Rius A, editors. Solanum tuberosum : methods and protocols. Berlin: Springer; 2021.
- Lukan, T., Pompe-Novak, M., Baebler, Š., Tušek-Žnidarič, M., Kladnik, A., Križnik, M., Blejec, A., Zagorščak, M., Stare, K., Dušak, B., Coll, A., Pollmann, S., Morgiewicz, K., Hennig, J., & Gruden, K. (2020). Precision transcriptomics of viral foci reveals the spatial regulation of immune-signaling genes and identifies RBOHD as an important player in the incompatible interaction between potato virus Y and potato. The Plant journal : for cell and molecular biology, 104(3), 645–661. https://doi.org/10.1111/tpj.14953
Temeljni viri in literatura
Knjige/ books:
- ATTWOOD, T.K./ PARRY-SMITH, D.J. 1999. Introduction to bioinformatics. Pearson Education, Harlow, England.
- Durbin, R., Eddy, S.R., Krogh, A., & Mitchison, G.J. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. New York: Cambridge, UK, Cambridge University Press; 1998.
- Datta, S. and Nettleton, D. eds., 2014. Statistical analysis of next generation sequencing data. Cham [etc.]: Springer.
- Korpelainen E. RNA-seq data analysis : a practical approach. Boca Raton: CRC Press, Taylor & Francis Group; 2015.
- Baker M. 2013. Big biology: The ’omes puzzle. Nature, 494, 7438: 416–419
Spletni viri/ web sources:
- Strežnik Nacionalnega centra za biotehnološko informacijo, ZDA http://www.ncbi.nlm.nih.gov
- The R Project for Statistical Computing http://www.r-project.org/
- Bioconductor – open source software for bioniformatics http://www.bioconductor.org/
Introduction to Linux for bioinformatics https://wiki.bits.vib.be/index.php/Introduction_to_Linux_for_bioinformatics