High-frequency technology

Course description

High-frequency semiconductor devices: diodes and transistors. Different semiconductors, band-gap and carrier mobility. Amplifier operating point, classes A,B,C. S-parameters. Amplifier stability. Amplifier thermal noise. Noise figure. Noise measurements. Amplifier saturation, definition of P1dB. Inter-modulation distortion, IMD intercept point. Non-linear high-frequency circuits: mixer and limiter. Lumped LC and cavity electrical filters. Piezoelectric mechanical resonators, quartz crystals and SAW devices. Electrical oscillators. Short-term and long-term stability. Oscillator phase noise. Frequency synthesizers. Phase-locked loops, loop stability and phase noise. Implementation of radio transmitters. Basic designs of radio receivers: homodyne, heterodyne and zero intermediate-frequency designs. Carrier and clock recovery in radio receivers.

Course is carried out on study programme

2nd Cycle Postgraduate Study Programme in Electrical Engineering

Objectives and competences

Learning specific circuit components and systems for high frequencies. Learning specific methods of measurements, analysis and synthesis of high-frequency circuits. Learning fundamental system knowledge of radio communications.

Learning and teaching methods

Lectures to explain the theoretical background and laboratory experiments to practically confirm the theory in the spirit of team work.

Intended learning outcomes

After successful completion of the course, students should be able to:

– characterize the building blocks of radio transmitters and receivers

– find the sensitivity of a radio receiver and measure its noise figure

– measure the output power, efficiency and intermodulation distortion od a radio transmitters

– select appropriate filters in different technologies for radio equipment

– find the phase-noise performance of a radio-frequency oscillators

– design a radio-frequency synthesizer including a phase-locked loop

– select the most appropriate technology for a radio receiver

Reference nosilca

  1. BOGATAJ, Luka, VIDMAR, Matjaž, BATAGELJ, Boštjan. Opto-electronic oscillator with quality multiplier. IEEE transactions on microwave theory and techniques, ISSN 0018-9480. [Print ed.], Feb. 2016, vol. 64, no. 2, str. 663-668.
  2. TRATNIK, Jurij, LEMUT, Primož, VIDMAR, Matjaž. Time-transfer and synchronization equipment for high-performance particle accelerators = Prenos takta in sinhronizacijska oprema za visoko-zmogljive pospeševalnike osnovnih delcev. Informacije MIDEM, ISSN 0352-9045, jun. 2012, letn. 42, št. 2, str. 115-12
  3. STEED, Robert J., PAVLOVIČ, Leon, NAGLIČ, Luka, VIDMAR, Matjaž, et al. Hybrid integrated optical phase-lock loops for photonic terahertz sources. IEEE journal of selected topics in quantum electronics, ISSN 1077-260X. [Print ed.], Jan./Feb. 2011, vol. 17, no. 1, str. 210-217.
  4. TRATNIK, Jurij, VIDMAR, Matjaž. 2.8 GHz – 5.7 GHz very fast UWB CCO using discrete-packaged SiGe RF transistors = 2,8 GHz – 5,7 GHz zelo hiter ultra širokopasoven tokovno krmiljen oscilator z diskretnimi SiGe RF tranzistorji. Informacije MIDEM, ISSN 0352-9045, mar. 2011, letn. 41, št. 1, str. 70-72.
  5. RASPOR, Adam, VIDMAR, Matjaž. Two double-ring cavity antennas in 19-22 dBi directivity range. Electronics letters, ISSN 0013-5194. [Print ed.], Dec. 2009, vol. 45, no. 25, str. 1288-1289.

Study materials

  1. Priročnik za laboratorijske vaje: http://antena.fe.uni-lj.si/literatura/vt.pdf
  2. Kostevc, D., Poglavja iz mikrovalov, Založba FE in FRI, Ljubljana, 2005
  3. Vidmar, M., Radiokomunikacije, Založba FE in FRI, Ljubljana, 2005
  4. Vidmar, M., Laboratorijske vaje iz Radiokomunikacij, Založba FE in FRI, Ljubljana, 2000
  5. http://antena.fe.uni-lj.si/literatura/

Bodi na tekočem

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana

E:  dekanat@fe.uni-lj.si T:  01 4768 411