Physics of Matter

Course description

Experimental basis and principles of quantum mechanics. Some simple examples described by using the methods of quantum mechanics. Hydrogen atom and other atoms. The basis of statistical thermodynamics. Electron gas. Self-assembly of molecules. Electrons in metals. Electric current in metals. Energy bands in crystals. Semiconductors. Dielectric properties of solids, liquids and gases. Magnetic properties of materials. Superconductivity. The basis of mechanics of continuous media and hydrodynamics. Plasma physics, kinetic and magnetohydrodynamic (MHD) description of plasmas.

Course is carried out on study programme

2nd Cycle Postgraduate Study Programme in Electrical Engineering

Objectives and competences

The acquired knowledge will enable the students to understand the electrical properties of  the materials like semiconductors, metals, superconductors, electronic gases, electrolyte solutions and gaseous plasmas.  

Learning and teaching methods

Lectures, seminars/problem solving.

Intended learning outcomes

After successful completion of the course, students should:

  1. Be able to select basic concepts of statistical physics.
  2. Be able to select basic concepts of quantum mechanics.
  3. Be able to tell the difference between the canonical, grand-canonical and micro-canonical ensemble .
  4. Be able to solve simple quantum mechanical examples using Schrodinger equation (like potential well and potential barrier)
  5. Have the ability to apply  the acquired mathematical knowledge in different fields of electrotechnics.
  6. Have deeper knowledge on electrical properties of materials.

Reference nosilca

  1. KONČAR, Boštjan, DRAKSLER, Martin, KOVAČIČ, Jernej, SCHNEIDER, Bernd Sebastian, IONIŢǍ, Codrina, GYERGYEK, Tomaž, KAR-WAI TSUI, Cedric, SCHRITTWIESER, Roman. Analysis of thermal response of new diagnostic probe in TCV. Fusion engineering and design, ISSN 0920-3796. [Print ed.], 2020, vol. 156, str. 111744-1-11744-4, doi: 10.1016/j.fusengdes.2020.111744
  2. GYERGYEK, Tomaž, KOVAČIČ, Jernej, GÓMEZ ALONSO, Iñaki, GUNN, James Paul, COSTEA, Stefan, MOZETIČ, Miran. Kinetic model of an inverted sheath in a bounded plasma system. Physics of plasmas, ISSN 1070-664X, Feb. 2020, iss. 2, 023520, str. 1-14, ilustr. https://aip.scitation.org/doi/full/10.1063/1.5130742, doi: 10.1063/1.5130742.
  3. DRAB, Mitja, KRALJ-IGLIČ, Veronika. Electric double layer of electrons : attraction between two like-charged surfaces induced by Fermi-Dirac statistics. Physics letters. Section A, ISSN 0375-9601. [Print ed.], 2019, vol. 383, iss. 4, str. 358-365, ilustr., doi: 10.1016/j.physleta.2018.11.003
  4. DANIEL, Matej, ŘEZNÍČKOVÁ, Jitka, HANDL, Milan, IGLIČ, Aleš, KRALJ-IGLIČ, Veronika. Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics. Scientific Reports, ISSN 2045-2322, 2018, vol. 8, art. no. 10810, str. 1-7, ilustr. https://www.nature.com/articles/s41598-018-28965-y, doi: 10.1038/s41598-018-28965-y.
  5. GORŠAK, Tanja, DRAB, Mitja, KRIŽAJ, Dejan, JERAN, Marko, LYUBOMIROVA GENOVA, Julia, KRALJ, Slavko, LISJAK, Darja, KRALJ-IGLIČ, Veronika, IGLIČ, Aleš, MAKOVEC, Darko. Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruptionof phospholipid membranes. Journal of Colloid and Interface Science.  2020, vol. 579, str. 508-519, ilustr. ISSN 0021-9797. https://www.sciencedirect.com/science/article/pii/S0021979720308249, DOI: 10.1016/j.jcis.2020.06.079.
  6. COSTEA, Stefan, KOVAČIČ, Jernej, TSKHAKAYA, David, SCHRITTWIESER, Roman, GYERGYEK, Tomaž, POPOV, Tsviatko K. Particle-In-Cell simulations of parallel dynamics of a blob in the scrape-off-layer plasma of a generic medium-size tokamak. Plasma physics and controlled fusion, ISSN 1361-6587., 2021, vol. 63 , no 5, str. 055016 (18 pages) ilustr. https://iopscience.iop.org/article/10.1088/1361-6587/abf22e, doi: 10.1088/1361-6587/abf22e.

Study materials

  1. J. Strnad, Fizika III in IV del, DZS, Ljubljana, vsakokratna nova izdaja
  2. L. Solymar, D. Walsh, Lectures on the electrical properties of materials, Clarendon Press, Oxford, 1970.
  3. S. Poberaj, Fizika snovi, Založba FE in FRI, 1976.
  4. B.H. Brandsen, C.J. Joachain, Quantum Mechanics, Prentice Hall, vsakokratna nova izdaja.
  5. R. A. Serway: Physics (international edition), Sounders Golden Sunburst Series, vsakokratna nova izdaja.
  6. A. Iglič in V. Kralj-Iglič, Izbrana poglavja iz fizike mehke snovi, Založba FE in FRI, 200
  7. A. Iglič, D. Drobne, V. Kralj-Iglič, Nanostructures in Biological Systems, Pan Stanford, Singapore, 2013 (in print).
  8. I. Supek, Teorijska fizika i struktura materije, Školska knjiga Zagreb, 1990.

Bodi na tekočem

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana

E:  dekanat@fe.uni-lj.si T:  01 4768 411