Automatic Control Systems

Course description

Introduction to automatic control: types, effects, holistic approach, computer integrated manufacturing, the building blocks of control systems, system approach to the control system design.

Systems and signals: examples of systems, connection to modelling, processes, basic signals, an introduction to spectral analysis.

Process modelling: goals, types, approaches, examples.

Descriptions of mathematical models: differential equations, transfer functions, block diagrams.

Systems analysis in the time domain: influence of poles and zeros, proportional, integral and differential systems, systems stability.

Simulation: simulation scheme, indirect approach, simulation of transfer functions.

Control systems : presentation with block diagrams and technological schemes, feedforward and feedback control, reference tracking and disturbance elimination, the effects of feedback on steady state error, stability, examples, basic industrial control algorithms, PID control, the role of P, I, and D parts, tuning with rules and simulation, examples.

Tools for computer-aided analysis and control systems design: Matlab, Control Toolbox, tool for the simulation – Matlab-Simulink, environment for multi-domain object oriented modelling and simulation Dymola-Modelica.

Examples: heating in the building, car suspension system, population dynamics, electrical systems, control of rotation systems, robotic system, hydraulic system, …

Course is carried out on study programme

Elektrotehnika 1. stopnja

Objectives and competences

The basic objective is to present the automatic control systems in an interesting way through a series of examples and using computer tools. Acquired skills: modeling and simulation of simple systems, an understanding of the principles of feedback loop, design of automatic control of simpler processes, familiarity of the most advanced computer tools for analysis, modeling, simulation and automatic control systems design.

Learning and teaching methods

Lectures (with many examples), interesting topics from invited lecturers, laboratory exercises

Intended learning outcomes

After successful completion of the course students should be able to:
-analyze dynamic systems,
– develop mathematical models of simple processes,
– develop simple simulation models,
– select a computer tool for modeling and simulation,
– use the Matlab-Simulink computer tool for modeling, simulation and control systems design,

– design basic automatic control of uncomplicated processes.

Reference nosilca

  1. ZUPANČIČ, Borut, SODJA, Anton. Computer-aided physical multi-domain modelling : some experiences from education and industrial applications. V: ALEXÍK, Mikuláš (ur.), ŠNOREK, Miroslav (ur.), CEPEK, Miroslav (ur.). EUROSIM 2010 : special issue, Simulation modelling practice and theory, Elsevier, ISSN 1569-190X, 2013, vol. 33, str. 45-67.
  2. ZUPANČIČ, Borut, SODJA, Anton. Analysis and control design of thermal flows in buildings : efficient experimentation with a room model in Matlab-Modelica environment. V: 8th EUROSIM Congress on Modelling and Simulation, Cardiff, Wales. AL-BEGAIN, Khalid (ur.). Eurosim 2013. [et al.]: IEEE = Institute of Electrical and Electronics Engineers, 2013, str. 155-160.
  3. KARER, Gorazd, MUŠIČ, Gašper, ŠKRJANC, Igor, ZUPANČIČ, Borut. Feedforward control of a class of hybrid systems using an inverse model. V: 6th Vienna International Conference on Mathematical Modelling, February 11-13, 2009, Vienna, Austria. TROCH, Inge (ur.), BREITENECKER, Felix (ur.). Transactions of IMACS, (Mathematics and computers in simulation, ISSN 0378-4754, vol. 82, no. 3 (Nov. 2011)). Amsterdam [etc.]: Elsevier, 2011, str. 414-427.
  4. SODJA, Anton, ZUPANČIČ, Borut. Modelling thermal processes in buildings using an object-oriented approach and Modelica. Simulation modelling practice and theory, ISSN 1569-190X, Jul. 2009, vol. 17, no. 6, str. 1143-1159.
  5. TROBEC LAH, Mateja, ZUPANČIČ, Borut, KRAINER, Aleš. Fuzzy control for the illumination and temperature comfort in a test chamber. Building and environment, ISSN 0360-1323, 2005, letn. 40, št. 12, str. 1626-1637.

Study materials


  1. B. Zupančič, Avtomatsko vodenje sistemov, delovna verzija učbenika,  Univerza v Ljubljani, Fakulteta za elektrotehniko, 2017.
  2. S. Oblak, I. Škrjanc, Matlab s Simulinkom : priročnik za laboratorijske vaje, 1. izdaja, Založba FE in FRI, Univerza v  Ljubljani, Fakulteta za elektrotehniko, 2005.


  1. B. Zupančič,  Zvezni regulacijski sistemi del,  Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2010.
  2. B. Zupančič, R. Karba, D. Matko, I. Škrjanc,  Simulacija dinamičnih sistemov,  Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko , 2010.
  3. R. Karba, Modeliranje procesov,  Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1999.
  4. S. Strmčnik, R.Hanus, Đ. Juričić, R. Karba, Z. Marinšek, D.Murray-Smith, H. Verbruggen, B. Zupančič, Celostni pristop k računalniškemu vodenju procesov, 1. izdaja,  Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1998.

R. C. Dorf, H. Bishop: Modern Control Systems, Pearson Education, Inc., Publishing As Pearson Prentice Hall, Tenth Edition, 2004.

Bodi na tekočem

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana

E: T:  01 4768 411