Course description

Electricity fundamentals refresher: electrical circuits as a zer0-dimensional problem. TEM transmission lines as a one-dimensional problem, telegrapher's equation. Characteristic impedance and reflection coefficient in time domain. Reflection coefficient and standing-wave ratio in frequency domain. Three-dimensional problems, mathematics refresher: coordinate systems, Lame coefficients, differential operations in space. Conversion of Maxwell equations from integral into differential form, Poynting theorem, wave equations for electric and magnetic field. Vector potential, Lorentz choice, wave equations for scalar and vector potential, solutions of potential equations. Potentials and exact electromagnetic field of a current element, static, dynamic and radiation terms, magnitudes of different terms as a function of frequency and distance, radiation resistance and efficiency. Electromagnetic waves in unlimited space, wave vector. Complex wave vector, total reflection and tunnelling. Electromagnetic field in confined space as a sum of free-space waves. One-dimensional standing wave in metal waveguides, phase and group velocity. Multi-dimensional standing wave in cavity resonators. Electromagnetic waves in lossy media, penetration depth and skin effect. Quality of inductors and resonators. Attenuation of TEM transmission lines. Microstrip line.

Course is carried out on study programme

Elektrotehnika 1. stopnja

Objectives and competences

Learning fundamental properties of dynamic electromagnetic fields. Learning phenomena on transmission lines. Learning radiation as the basis of wireless communications. Learning different electromagnetic effects in infinite and confined space, in lossless and lossy media.

Learning and teaching methods

Lectures for theoretical background and laboratory experiments to practically confirm the theory working in a team environment.

Intended learning outcomes

Knowledge and understanding the basics of dynamic electromagnetic fields, transmission lines, radiation mechanisms, waves in infinite and confined space, waves in lossy media.

Reference nosilca

1.  BOGATAJ, Luka, VIDMAR, Matjaž, BATAGELJ, Boštjan. Opto-electronic oscillator with quality multiplier. IEEE transactions on microwave theory and techniques, ISSN 0018-9480. [Print ed.], Feb. 2016, vol. 64, no. 2, str. 663-668.

2.  TRATNIK, Jurij, LEMUT, Primož, VIDMAR, Matjaž. Time-transfer and synchronization equipment for high-performance particle accelerators = Prenos takta in sinhronizacijska oprema za visoko-zmogljive pospeševalnike osnovnih delcev. Informacije MIDEM, ISSN 0352-9045, jun. 2012, letn. 42, št. 2, str. 115-122.

3.  STEED, Robert J., PAVLOVIČ, Leon, NAGLIČ, Luka, VIDMAR, Matjaž, et al. Hybrid integrated optical phase-lock loops for photonic terahertz sources. IEEE journal of selected topics in quantum electronics, ISSN 1077-260X. [Print ed.], Jan./Feb. 2011, vol. 17, no. 1, str. 210-217.

4.  TRATNIK, Jurij, VIDMAR, Matjaž. 2.8 GHz – 5.7 GHz very fast UWB CCO using discrete-packaged SiGe RF transistors = 2,8 GHz – 5,7 GHz zelo hiter ultra širokopasoven tokovno krmiljen oscilator z diskretnimi SiGe RF tranzistorji. Informacije MIDEM, ISSN 0352-9045, mar. 2011, letn. 41, št. 1, str. 70-72.

5.  RASPOR, Adam, VIDMAR, Matjaž. Two double-ring cavity antennas in 19-22 dBi directivity range. Electronics letters, ISSN 0013-5194. [Print ed.], Dec. 2009, vol. 45, no. 25, str. 1288-1289.

Study materials

1. Učbenik / textbook:


2. Priprava (zapiski) predavanj / lecture notes:


3. Zbirka nalog tihih vaj / collection of exam problems:


4. Rešitve nalog tihih vaj / collection of exam solutions:


5. Navodila za laboratorijske vaje / instructions for laboratory experiments:


Bodi na tekočem

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana

E:  dekanat@fe.uni-lj.si T:  01 4768 411